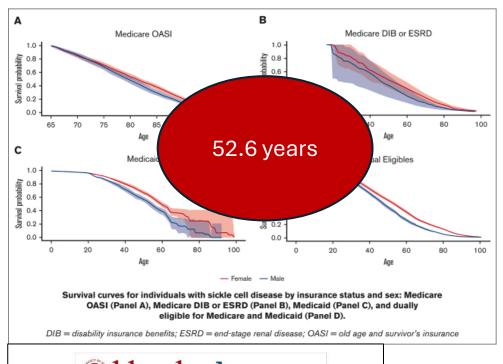
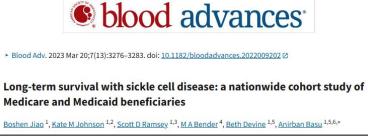
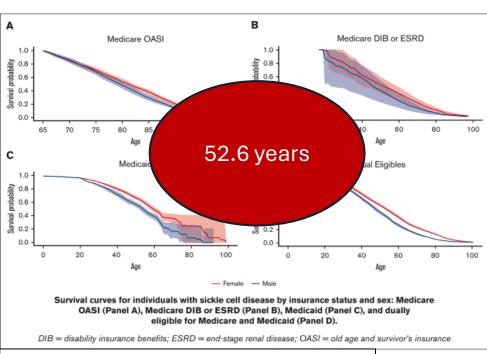
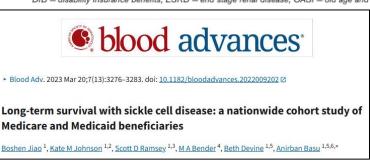


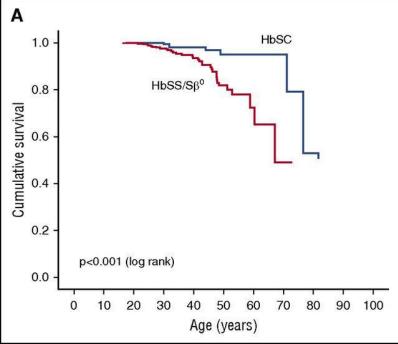
The Case for Prevention

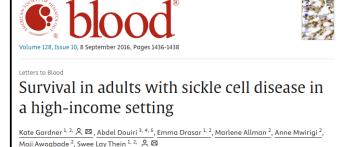

Definition: Preventing birth of babies affected by clinically significant haemoglobinopathies

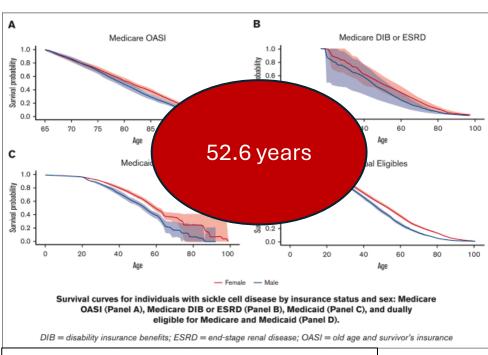


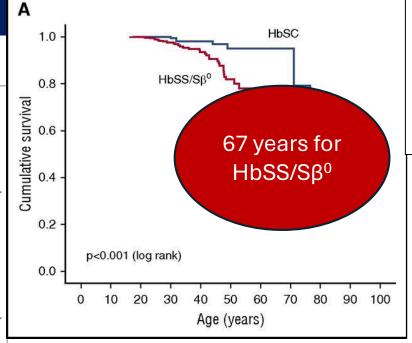


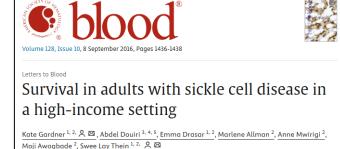

Long-term survival with sickle cell disease: a nationwide cohort study of Medicare and Medicaid beneficiaries

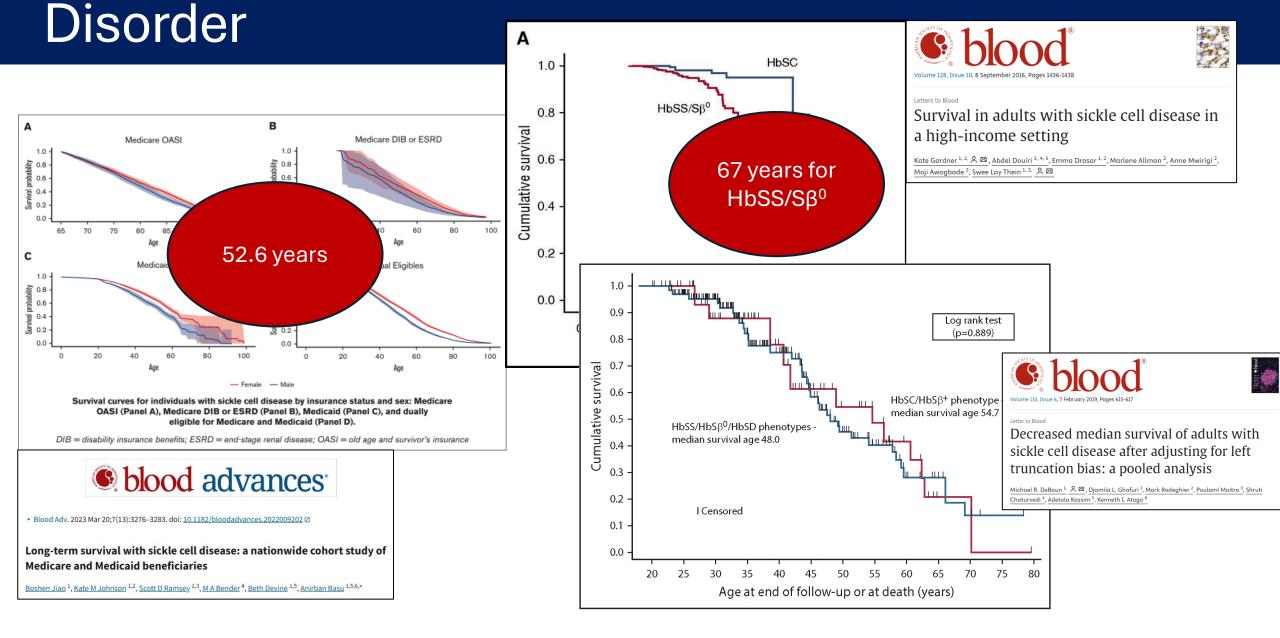

Boshen Jiao ¹, Kate M Johnson ^{1,2}, Scott D Ramsey ^{1,3}, M A Bender ⁴, Beth Devine ^{1,5}, Anirban Basu ^{1,5,6,*}

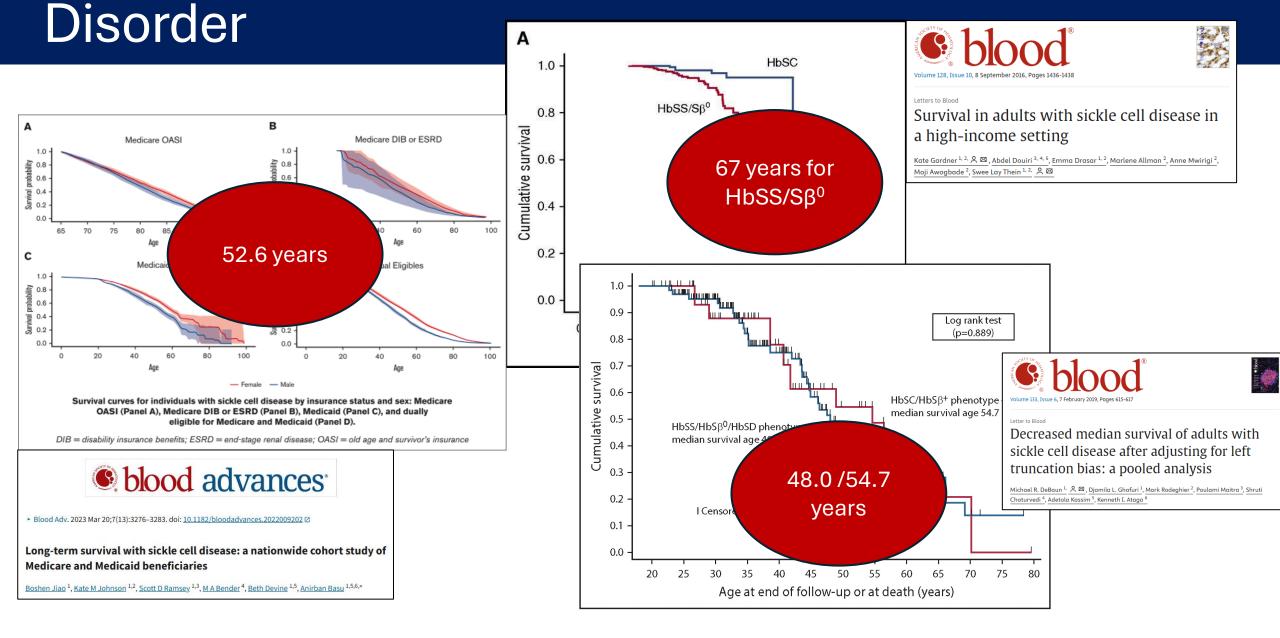




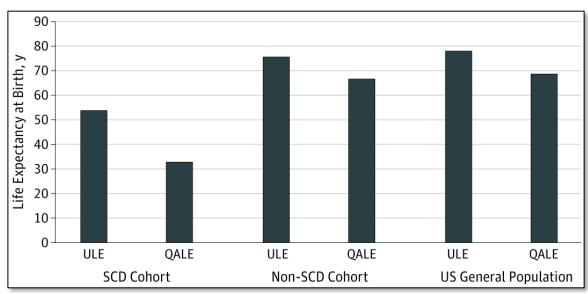

blood advances


Long-term survival with sickle cell disease: a nationwide cohort study of


Boshen Jiao 1, Kate M Johnson 1,2, Scott D Ramsey 1,3, M A Bender 4, Beth Devine 1,5, Anirban Basu 1,5,6,*


► Blood Adv. 2023 Mar 20;7(13):3276-3283. doi: 10.1182/bloodadvances.2022009202 ☑

Medicare and Medicaid beneficiaries

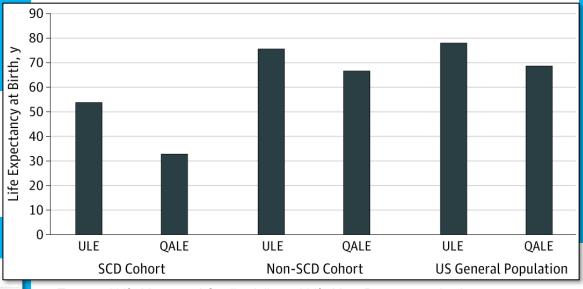


Life Expectancy Remains Short in Sickle Cell Disorder A **HbSC** 1.0 HbSS/SBO 0.8 Survival in adults with sickle cell disease in mulative survival a high-income setting Medicare DIB or ESRD Medicare OASI 0.6 Kate Gardner 1, 2, Abdel Douiri 3, 4, 5, Emma Drasar 1, 2, Marlene Allman 2, Anne Mwirigi 2, 8.0 aballity 67 years for Moji Awogbade 2, Swee Lay Thein 1, 2, 0.6 o.4 HbSS/Sβ⁰ 듯 0.2 0.4 52.6 years С Childhood Survival for SCD 0.6 Log rank test . 5 0.2 (p=0.889)Jamaica 84% HbSC/HbSβ⁺ phenotype Survival curves for individuals with sickle cell disease by insurance s OASI (Panel A), Medicare DIB or ESRD (Panel B), Medicaid (Pa median survival age 54.7 94% eligible for Medicare and Medicaid (Panel D). Decreased median survival of adults with DIB = disability insurance benefits; ESRD = end-stage renal disease; OASI = sickle cell disease after adjusting for left truncation bias: a pooled analysis • blood advances 4.7 Michael R. DeBaun ^{1,} 🙎 🖾 , Djamila L. Ghafuri ¹, Mark Rodeghier ², Poulami Maitra ³, Shruti Chaturvedi ⁴, Adetola Kassim ⁵, Kenneth I. Ataga ⁶ ► Blood Adv. 2023 Mar 20;7(13):3276-3283. doi: 10.1182/bloodadvances.2022009202 ☑ NIH, Fogarty International Center Long-term survival with sickle cell disease: a nationwide cohort study o Medicare and Medicaid beneficiaries 50 55 Boshen Jiao 1, Kate M Johnson 1,2, Scott D Ramsey 1,3, M A Bender 4, Beth Devine 1,5, Anirban Basu 1,5,6,* Age at end of follow-up or at death (years)

Poorer Quality of Life in Sickle Cell Disorder

Expected Life-Years and Quality-Adjusted Life-Year Decrements by Age Sickle cell disease (SCD), QALE: quality-adjusted life expectancy; ULE: unadjusted life expectancy.

Lubeck et al, JAMA Netw Open, 2019


Poorer Quality of Life in Sickle Cell Disorder

Frequent and chronic pain

- Pain on 54.5% days
- 92% have pain lasting ≥ 6

months

Smith et al, Journal of Opioid Management, 2015 Thompson et al, Pain Medicine, 2014

Clinical Commissioning Policy:
Allogenic Haematopoietic Stem Cell
Transplantation for adults with sickle cell
disease

First published: December 2019

Prepared by NHS England Specialised Services Clinical Reference Group for Blood and Marrow Transplantation and Haemoglobinopathies

NICE National Institute for Blood and Marrow Transplantation and Haemoglobinopathies

NICE Standards and Clinical Knowledge British National Formulary Indicators Summaries (CKS) British National Formulary Formulary (INF) Formulary (INF) Formulary (INF) British National Formulary Formulary Conditions > Blood.conditions

Exagamglogene autotemcel for treating severe sickle cell disease in people 12 years and over

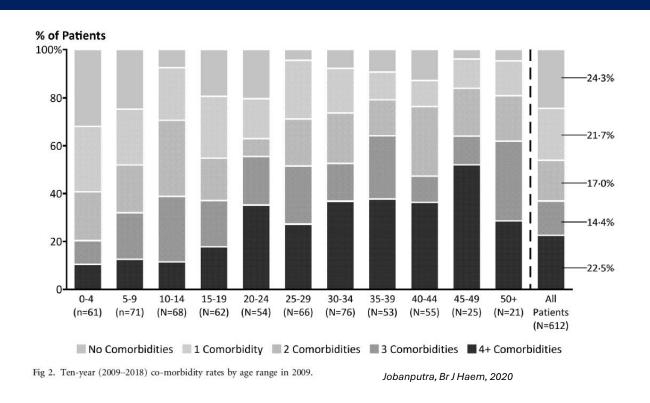
Expected Life-Years and Quality-Adjusted Life-Year Decrements by Age Sickle cell disease (SCD), QALE: quality-adjusted life expectancy; ULE: unadjusted life expectancy.

Lubeck et al, JAMA Netw Open, 2019

Depression and anxiety more prevalent

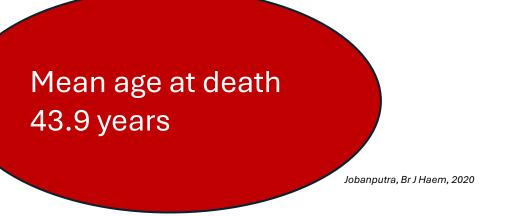
Treadwell, Lancet Haem, 2023

Technology appraisal guidance | TA1044 | Published: 26 February 2025


900 Male Female All 3000 - 2500 - 20

Socioeconomic impact

2000 - 1500 - 1000 - 500 - 500 - SCD Cohort Non-SCD Cohort General US


Lubeck et al, JAMA Netw Open, 2019

Thalassaemia: Life Expectancy and Quality of Life Both Reduced



Chronic bone and joint pain in 83.3% including children as young as 3 years of age

UKTS standards 2023

Limited curative options

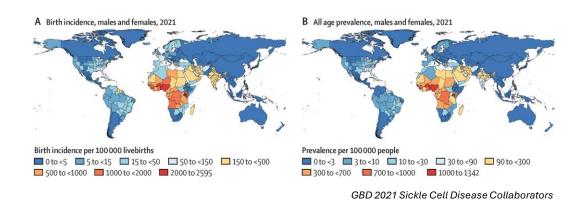
Strongest Calls for Prevention from People Living with Haemoglobinopathies

'I can't believe that thalassaemia babies are still being born in the UK'

49-year-old man with transfusion-dependent beta thalassaemia

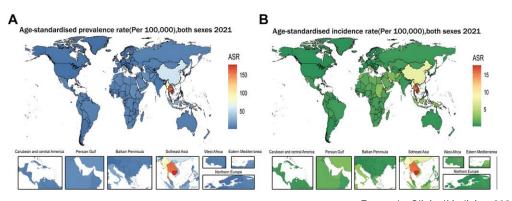
3 weekly blood transfusions, history of delayed growth and puberty, hypogonadism, hypothyroidism, impaired glucose tolerance, osteoporosis, chronic bone pain, fatigue not improved by transfusion

'We need to tell people not to have 'wrong' marriages, where they both have sickle trait'


34-year-old woman living with sickle cell disorder HbSS

Frequent severe painful crises, avascular necrosis of the shoulder, severe chronic pain. Regular red cell exchange transfusion programme but severe side-effects of treatment

Increasing Global Birth Rates and Financial Impact on Healthcare Systems


Sickle cell disorder

- 7.74 million people globally (2021)
- Increasing number of affected babies born

Thalassaemia

- 18.3 per 100,000 persons (2021)
- Slight decrease globally, vast differences between regions



Tuo et al, eClinicalMedicine, 2024

Low & middle income countries: high prevalence, limited resources High income countries: high cost therapies eg Casgevy® gene therapy & iron chelation, comorbidities

Prevention Approach #1

School-Based Voluntary Screening & Public Awareness *Italy*

Latium, Italy

- Voluntary universal screening of secondary school students (13 -14 yrs)
- Health education programme in schools
- Screening by full blood count including red cell indices & HPLC +/molecular genetics
- Carrier state detected → genetic counselling, family testing
- Started for β thalassaemia prevention, now also sickle cell included
- 1975 2011: 1,466,100 students screened; 26,786 (1.8 %) carriers of β thalassaemia identified
- Birth rate of affected babies = 0 since 1993 (report 2013)

Prevention Approach #2

Pre-marital Testing & Informed Choice

Cyprus

Cyprus: Facilitation of Informed Choice

- Premarital screening for thalassaemia compulsory by law since 1980
- Public education programme
- Premarital population screening & genetic counselling
- Informed, voluntary decision-making: PND > change in partner choice
- Expected affected birth rate 50 -70 / year → reduced to 0-2 / year in 1980s

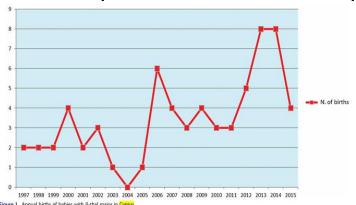
Cyprus: Facilitation of Informed Choice

- Premarital screening for thalassaemia compulsory by law since 1980
- Public education programme
- Premarital population screening & genetic counselling
- Informed, voluntary decision-making: PND > change in partner choice
- Expected affected birth rate 50 -70 / year → reduced to 0-2 / year in 1980s

Factors for Success

- Societal acceptance including patient advocacy
- Church support
- > State funded
- Pregnancies outside marriage uncommon

Cyprus: Facilitation of Informed Choice


- Premarital screening for thalassaemia compulsory by law since 1980
- Public education programme
- Premarital population screening & genetic counselling
- Informed, voluntary decision-making: PND > change in partner choice
- Expected affected birth rate 50 -70 / year → reduced to 0-2 / year in 1980s

Factors for Success

- Societal acceptance including patient advocacy
- > Church support
- > State funded
- Pregnancies outside marriage uncommon

Recent Changes

- Confidence in outcomes for affected children
- Migrant populations: different approaches
- > Ethical questions around compulsory testing

Angastiniotis, Thalss Rep. 2022 Bozkurt, Hemoglobin. 2007 Angastiniotis t al, Hemoglobin. 2021

Prevention Approach #3

Premarital Testing &
Prevention of 'At Risk' Marriage

Nigeria

Anambra State, Nigeria: 'At Risk' Marriage Forbidden

- Mandatory pre-marital 'genotype' of both partners
- Churches and mosques forbid marriage if risk of sickle cell disease inheritance

Medical Genotype Chart Table For Intending Couple

Gend	otype		Pos	eible		
Partner X	Partner Y	Possible Combination			Remark	
AA	AA	AA	AA	AA	AA	Can Marry
AA	AS	AA	AS	AA	AS	Can Marry
AS	AS	AA	AS	AS	SS	Not to Marry
SS	AA	AS	AS	AS	AS	Can Marry
SS	SS	SS	SS	SS	SS	Not to Marry
AS	SC	SS	AS	AC	SC	Not to Marry
AS	CC	AC	AC	SC	SC	Not to Marry
AA	SC	AS	AC	AS	AC	Can Marry
AA	CC	AC	AC	AC	AC	Can Marry
	NUMBER OF STREET	or gr irrie	oup r), S	s of	geno ckle	otype are: AA r). Others are

Anambra State, Nigeria: 'At Risk' Marriage Forbidden

- Mandatory pre-marital 'genotype' of both partners
- Churches and mosques forbid marriage if risk of sickle cell disease inheritance
- Birth rate & prevalence remain high

Limitations:

- Variable practice across the country
- Lack of universal free testing
- Lack of standardisation in testing, inaccurate results
- > Falsified test results
- > Pregnancies outside marriage
- > Ethical concerns around personal autonomy

Medical Genotype Chart Table For Intending Couple

	otype		Pos	sible		
Partner X	Partner Y	Combination			Remark	
AA	AA	AA	AA	AA	AA	Can Marry
AA	AS	AA	AS	AA	AS	Can Marry
AS	AS	AA	AS	AS	SS	Not to Marry
SS	AA	AS	AS	AS	AS	Can Marry
SS	SS	SS	SS	SS	SS	Not to Marry
AS	SC	SS	AS	AC	SC	Not to Marry
AS	CC	AC	AC	SC	SC	Not to Marry
AA	SC	AS	AC	AS	AC	Can Marry
AA	CC	AC	AC	AC	AC	Can Marry
	NUMBER OF STREET	rrie	000000-00	s (Si	- HERRICH	otype are: AA r). Others are

Most Widely Read Newspaper

Love or Lies?: Fake genotype results fuel rise in sickle cell births, broken homes

10th June 2025

Prevention Approach #4

Pre-implantation Genetic Testing *UK*

Preimplantation Genetic Testing for Monogenic Disorders (PGT-M)- Approved Conditions

- Beta thalassaemia OMIM 141900. HBB
- Alpha thalassaemia OMIM 141800; HBA1
- ? includes HbH
- Sickle cell disease OMIM #603903; HBB (OMIM 141900)

Preimplantation Genetic Diagnosis (PGD) NHSE Criteria

'PGD represents the only way for parents to have an unaffected child to whom they are both biological parents, without risking the need for termination of pregnancy.'

Eligibility criteria:

Standard IVF criteria

AND

- ✓ At ≥10% risk of having a child with a serious genetic condition
- ✓ HFEA licensed indication for PGD
- ✓ Test included in the [National Genomic Test Directory] (UK Genetic Testing Network)
- No living unaffected child from current relationship

Clinical Commissioning Policy: Pre-implantation Genetic Diagnosis (PGD)

Reference: E01/P/a

Case Study 1:29 year old female with TDT

Patient X (Transfusion dependent thalassaemia)

ΗΒΑ1/ΗΒΑ2: αα/αα

HBB: c.47G>A p.(Trp16Ter) – Homozygous

Failed sibling bone marrow transplant in childhood

Partner

ΗΒΑ1/ΗΒΑ2: αα/αα

HBB: c.27dup p.(Ser10ValfsTer14) – Heterozygous

Sample ID	Analysis Method	Genotype
	HBA MLPA exon dosage assay (MRC-Holland P140-C1)	αα/αα
	HBA1 DNA sequencing with direct chromatogram check exons 1-3	c.[=];[=]
	HBA2 DNA sequencing with direct chromatogram check exons 1-3	c.[=];[=]
	HBB DNA sequencing with direct chromatogram check exons 1-3	c.[47G>A];[47G>A]
	HBB MLPA exon dosage assay (MRC-Holland P102-D1)	c.[=];[=]

Case Study 1:29 year old female with TDT

Patient X (Transfusion dependent thalassaemia)

ΗΒΑ1/ΗΒΑ2: αα/αα

HBB: c.47G>A p.(Trp16Ter) – Homozygous

Failed sibling bone marrow transplant in childhood

Partner

ΗΒΑ1/ΗΒΑ2: αα/αα

HBB: c.27dup p.(Ser10ValfsTer14) – Heterozygous

Sample ID	Analysis Method	Genotype
S2502989	HBA MLPA exon dosage assay (MRC-Holland P140-C1)	αα/αα
	HBA1 DNA sequencing with direct chromatogram check exons 1-3	c.[=];[=]
	HBA2 DNA sequencing with direct chromatogram check exons 1-3	c.[=];[=]
	HBB DNA sequencing with direct chromatogram check exons 1-3	c.[47G>A];[47G>A]
	HBB MLPA exon dosage assay (MRC-Holland P102-D1)	c.[=];[=]

Preimplantation genetic testing

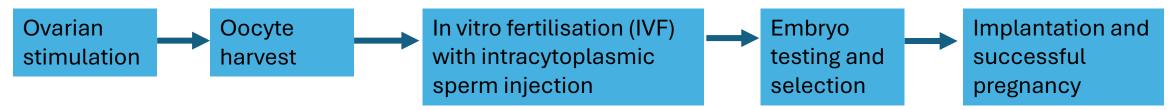
Case Study 1:29 year old female with TDT

Patient X (Transfusion dependent thalassaemia)

ΗΒΑ1/ΗΒΑ2: αα/αα

HBB: c.47G>A p.(Trp16Ter) – Homozygous

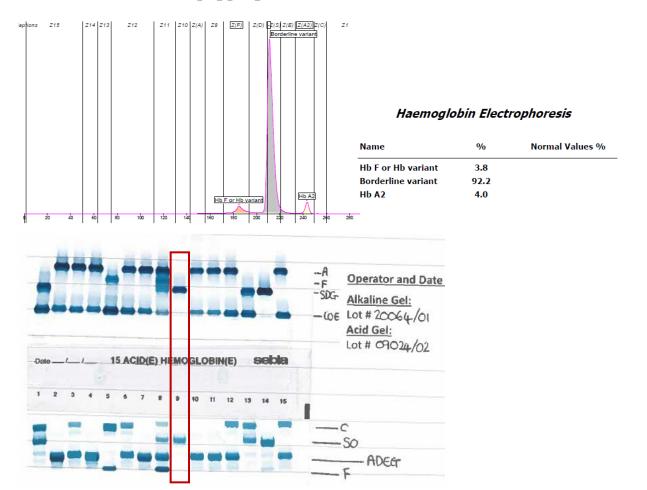
Failed sibling bone marrow transplant in childhood


Partner

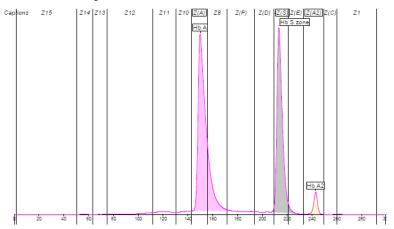
ΗΒΑ1/ΗΒΑ2: αα/αα

HBB: c.27dup p.(Ser10ValfsTer14) – Heterozygous

Sample ID	Analysis Method	Genotype
S2502989	HBA MLPA exon dosage assay (MRC-Holland P140-C1)	αα/αα
	HBA1 DNA sequencing with direct chromatogram check exons 1-3	c.[=];[=]
	HBA2 DNA sequencing with direct chromatogram check exons 1-3	c.[=];[=]
	HBB DNA sequencing with direct chromatogram check exons 1-3	c.[47G>A];[47G>A]
	HBB MLPA exon dosage assay (MRC-Holland P102-D1)	c.[=];[=]


Preimplantation genetic testing

Consideration of further PGT cycle 2023 – would be unfunded – decision not to proceed


Case Study 2: 33-year old male

Mr Y

Partner

31 year old female

Haemoglobin Electrophoresis

Name	%	Normal Values %
Hb A	55.6	
Hb S zone	41.0	
Hb A2	3.4	

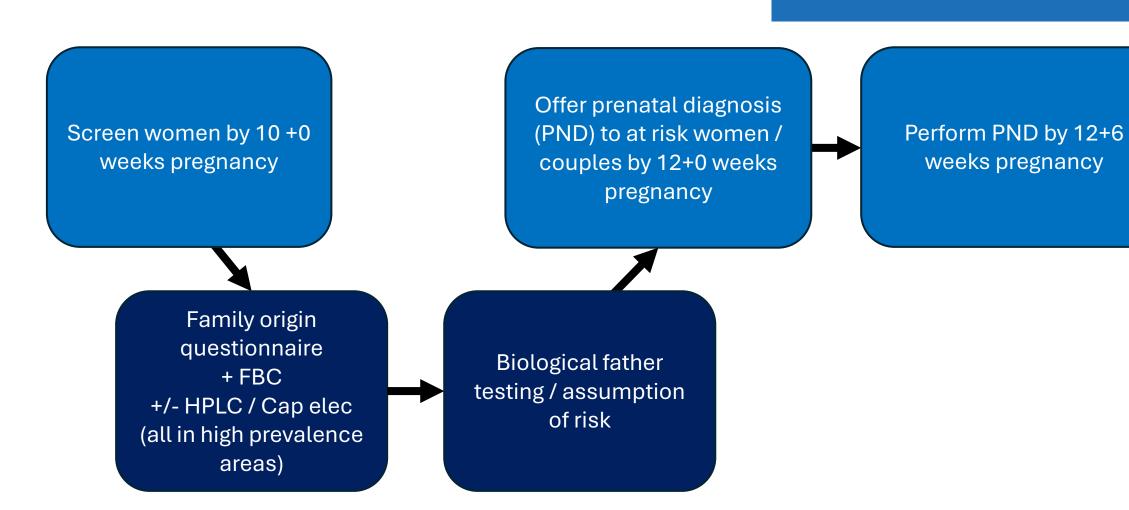
Case Study 2: 33-year old male

- Mr Y: Hb SS; Partner: Hb AS
- Referred for PGT consideration
- Not eligible due to BMI of female partner: 34 kg/m²
- Continue to try for natural conception, prenatal diagnosis stated to be unacceptable to couple

Prevention Approach #5

Antenatal Screening & Prenatal Diagnosis

UK


NHSE Haemoglobinopathies Antenatal Screening Programme

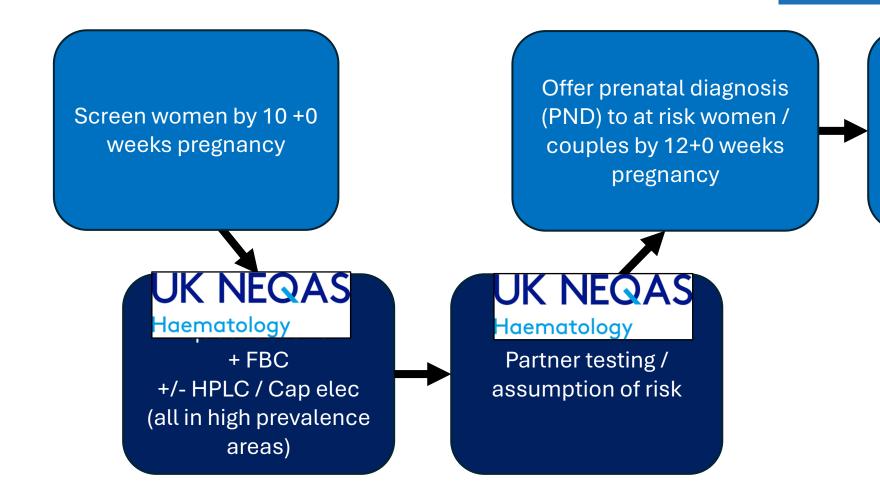
Guidance

Antenatal screening

Updated 10 October 2024

NHSE Haemoglobinopathies Antenatal Screening Programme

Guidance


Antenatal screening

Haematology

Perform PND by 12+6

weeks pregnancy

Updated 10 October 2024

NHSE Antenatal Screening Programme Performance

Corporate report

NHS screening programmes in England: 2020 to 2021

Updated 16 February 2023

Antenatal (AN) screening

99.7%

screening coverage

Measure	Value
Women tested	643,672
Percentage of women tested by 10 weeks	51.3%
Screen positive pregnant women	11,743
Rate of screen positive women	1.92%
Percentage of fathers tested	72.4%
At risk couples detected	802

Prenatal diagnostic (PND) testing

Measure	Value
PNDs performed	399
Affected fetal results	99

NHSE Antenatal Screening Programme Performance

Corporate report

NHS screening programmes in England: 2020 to 2021

Updated 16 February 2023

Antenatal (AN) screening

99.7%

screening coverage

Measure	Value
Women tested	643,672
Percentage of women tested by 10 weeks	51.3%
Screen positive pregnant women	11,743
Rate of screen positive women	1.92%
Percentage of fathers tested	72.4%
At risk couples detected	802

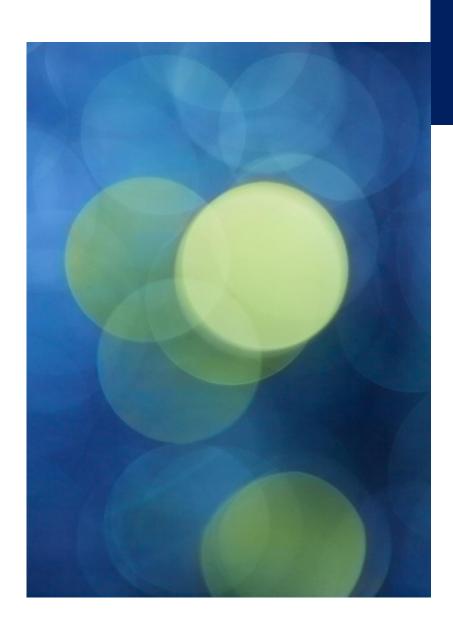
Prenatal diagnostic (PND) testing

Measure	Value
PNDs performed	399
Affected fetal results	99

Limitations of the NHSE Antenatal Screening Programme

Missed screening: higher risk for women booking late in pregnancy / English is not first language

Inaccurate genetic information: family origin, paternity, donor gametes, surrogacy, bone marrow transplant


Screening will not detect all at risk couples:

- Restricted testing in low prevalence areas
- α^0 trait outside defined high risk family origins
- Beta thalassaemia trait without raised HbA₂ e.g. severe iron deficiency

Delays / gaps / errors in testing, reporting and counselling

Women who decline screening / PND / termination due to ethical, religious and cultural beliefs

Broadening UK Approach to HBO Prevention

School-based awareness and screening

- Plans to improve access to newborn sickle screening result will miss:
 - ➤ People born outside UK
 - > Beta or alpha thalassaemia carriers

Consider expanding PGT eligibility

Need for cost effectiveness data

Avoid sole reliance on antenatal screening & prenatal diagnosis

Variable acceptance by woman / couple / community

References

- Amato A, Cappabianca MP, Lerone M, Colosimo A, Grisanti P, Ponzini D, Di Biagio P, Perri M, Gianni D, Rinaldi S, Piscitelli R. Carrier screening for inherited haemoglobin disorders among secondary school students and young adults in Latium, Italy. J Community Genet. 2014 Jul;5(3):265-8. doi: 10.1007/s12687-013-0171-z. Epub 2013 Oct 27. PMID: 24163007; PMCID: PMC4059842.
- Angastiniotis MA, Hadjiminas MG. Prevention of thalassaemia in Cyprus. Lancet. 1981 Feb 14;1(8216):369-71. doi: 10.1016/s0140-6736(81)91682-2. PMID: 6109998.
- Michael Angastiniotis, Mary Petrou, Dimitrios Loukopoulos, Bernadette Modell, Dimitrios Farmakis, Panos Englezos & Androulla Eleftheriou (2021): The Prevention of Thalassemia Revisited: A Historical and Ethical Perspective by the Thalassemia International Federation, Hemoglobin, DOI: 10.1080/03630269.2021.1872612
- Angastiniotis, M.; Christou, S.; Kolnakou, A.; Pangalou, E.; Savvidou, I.; Farmakis, D.; Eleftheriou, A. The Outcomes of Patients with Haemoglobin Disorders in Cyprus: A Joined Report of the Thalassaemia International Federation and the Nicosia and Paphos Thalassaemia Centres (State Health Services Organisation). Thalass. Rep. 2022, 12, 143-156. https://doi.org/10.3390/thalassrep12040019
- Bozkurt G. Results from the north cyprus thalassemia prevention program. Hemoglobin. 2007;31(2):257-64. doi: 10.1080/03630260701297204. PMID: 17486509.
- Cao A, Rosatelli MC, Monni G, Galanello R. Screening for thalassemia: a model of success. Obstet Gynecol Clin North Am. 2002 Jun;29(2):305-28, vi-vii. doi: 10.1016/s0889-8545(01)00006-7. PMID: 12108831.
- DeBaun MR, Ghafuri DL, Rodeghier M, Maitra P, Chaturvedi S, Kassim A, Ataga KI. Decreased median survival of adults with sickle cell disease after adjusting for left truncation bias: a pooled analysis. Blood. 2019 Feb 7;133(6):615-617. doi: 10.1182/blood-2018-10-880575. Epub 2018 Dec 10. PMID: 30530750; PMCID: PMC6367648.
- Gardner K, Douiri A, Drasar E, Allman M, Mwirigi A, Awogbade M, Thein SL. Survival in adults with sickle cell disease in a high-income setting. Blood. 2016 Sep 8;128(10):1436-8. doi: 10.1182/blood-2016-05-716910. Epub 2016 Jul 20. PMID: 27439910.
- Jiao B, Johnson KM, Ramsey SD, Bender MA, Devine B, Basu A. Long-term survival with sickle cell disease: a nationwide cohort study of Medicare and Medicaid beneficiaries. Blood Adv. 2023 Jul 11;7(13):3276-3283. doi: 10.1182/bloodadvances.2022009202. PMID: 36929166; PMCID: PMC10336259.
- Kuyoro O, Shalamov MM, Brogan C, Goldman R. A retrospective cohort study examining the outcomes of patients who present for fertility care and exceed a set body mass index threshold for treatment. F S Rep. 2024 Sep 7;5(4):417-421. doi: 10.1016/j.xfre.2024.08.010. PMID: 39781074; PMCID: PMC11705578.
- Lubeck D, Agodoa I, Bhakta N, et al. Estimated Life Expectancy and Income of Patients With Sickle Cell Disease Compared With Those Without Sickle Cell Disease. JAMA Netw Open. 2019;2(11):e1915374. doi:10.1001/jamanetworkopen.2019.15374
- Thomson, Azalea M et al. Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: a systematic analysis from the Global Burden of Disease Study 2021. The Lancet Haematology, Volume 10, Issue 8, e585 e599
- Tuo, Yuanyuan et al. Global, regional, and national burden of thalassemia, 1990–2021: a systematic analysis for the global burden of disease study 2021. eClinicalMedicine, Volume 72, 102619