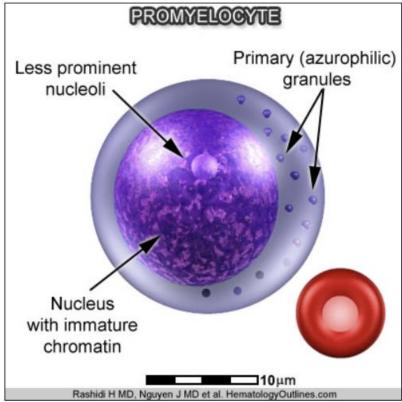


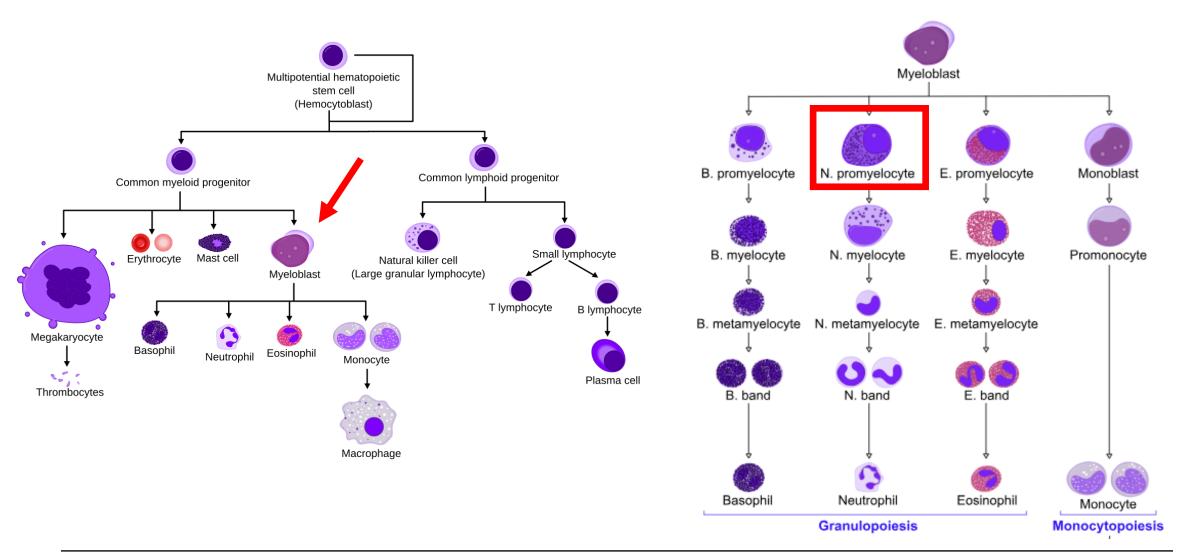
SUPERHERO OR VILLAIN



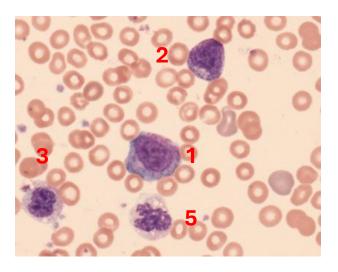
Nicki Lawrence

Principal Biomedical Scientist Advanced Practitioner in Morphology

NMCPS, University Hospital of North Midlands NHS Trust, Stoke on Trent



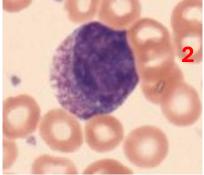
SUPERHERO OR VILLAIN?


- Promyelocytes are larger than myeloblasts and measure approximately 12–20 microns in diameter
- The nucleus of a promyelocyte is approximately the same size as a myeloblast but their cytoplasm is much more abundant
- The cytoplasm is basophilic and contains primary red/purple granules
- A Golgi zone may be visible as a paranuclear hof or clearing
- Promyelocytes have less prominent nucleoli than myeloblasts but they may be visible
- The nuclear chromatin is often described as finely dispersed but it is slightly coarser than a myeloblast
- Promyelocytes comprise approximately 2% of nucleated cells in the bone marrow and do not circulate in peripheral blood under normal conditions

GRANULOPOIESIS

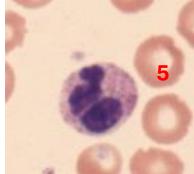
⁻ Image: Hematopoiesis (human) diagram.png by A. Rad, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7351905

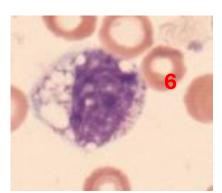

SUPERHERO




Key for all images:

- 1. Promyelocyte
- 2. Myelocyte
- 3. Metamyelocyte
- 4. Band Form Neutrophil
- 5. Neutrophil
- 6. Toxic Vacuolated Neutrophil


- Promyelocytes play an essential role in haematopoiesis by serving as an intermediate in the differentiation pathway leading to mature granulocytes
- Granulocytes are a vital part of the innate immune system



VILLAIN

Patient 1 – 69yo male, unwell, GP

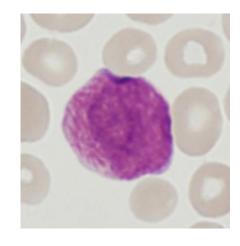
14. Tests	Result	Units	Flags and Ref. Ranges	Status
Haemoglobin	79	g/L	L (120 - 170)	R
White Cell Count	1.9	10×9/L	L (4.0 - 11.0)	R
Platelets	22	10×9/L	L (150 - 450)	R
Red Cell Count	2.27	10×12/L	L (4.30 - 5.70)	R
Haematocrit	0.210		L (0.37 - 0.51)	R
Mean Cell Volume	92.3	fL	(80 - 100)	R
Mean Cell Haemoglobin	35.0	pg	H (26.5 - 31.5)	R
Mean Cell Hb Concentration	379		H (300 - 350)	R
Mean Platelet Volume	9.9	g/L f1		R
Red cell distribution width	17.8			R
Platelet distribution width	63.6			R R
% Hypochromic Red Cell	0.9	*	(<5.0)	R
Neut (abs no)	0.90	10×9/L	L (2.0 - 7.5)	R
vLymph (abs no)	0.70	10×9/L	L (1.10 - 3.60)	R
_				
14. Tests	Result	Units	Flags and Ref. Ranges	Status
>Mono (abs no)	0.00	10×9/L	L (0.20 - 0.80)	R
Eos (abs no)	0.20	10×9/L	(0.04 - 0.40)	R
Bas (abs no)	0.00	10×9/L	(0.0 - 0.10)	R
LUCs (abs no)	0.00	10×9/L	(0.00 - 0.44)	R
Neutrophils (%)	49	8	(40 - 75)	R
Lymphocytes (%)	36	8		R
Monocytes (%)	1	*	L (2 - 10)	R
Eosinophils (%)	10	*	H (1 - 6)	R
Basophils (%)	2	8	H (0 - 1)	R
Large unstained cells (%)	3	8		R
Blast Flag	***			R
	****			N.

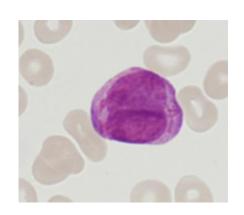
Atypical Lymph Flag Myelo-peroxidase Def. Flag	***			
Atypical Lymph Flag		ilm examin	ned	R

INR 1.2
D-dimer 4428 ng/mL
Fibrinogen 2.65 g/L

Patient 2 – 33yo male, bruising, A&E

Haemoglobin	111	g/L	L (120 - 170)	R	
White Cell Count	54.3	10×9/L	H (4.0 - 11.0)	R	
Platelets	34	10×9/L	L (150 - 450)	R	
Red Cell Count	3.27	10×12/L		R	
Haematocrit	0.299		L (0.37 - 0.51)	R	
Mean Cell Volume	91.6	fL	(80 - 100)	R	
Mean Cell Haemoglobin	34.0	pg	H (26.5 - 31.5)	R	
Mean Cell Hb Concentration		g/L	H (300 - 350)	R	
Mean Platelet Volume	9.9	f1		R	
14. Tests	Result	Units	Flags and Ref. Ranges	Status	
>Red cell distribution width	16.8			R	
Platelet distribution width	81.1			R	
% Hypochromic Red Cell	0.6	*	(<5.0)	R	
Neut (abs no)	2.17	18×9/L	(2.0 - 7.5)	R	
Lymph (abs no)	2.17	18×9/L	(1.10 - 3.60)	R	
Mono (abs no)	0	18×9/L	L (0.20 - 0.80)	R	
Eos (abs no)	0	10×9/L	L (0.04 - 0.40)	R	
Bas (abs no)	0	10×9/L	(0.0 - 0.10)	R	
LUCs (abs no)	0	10×9/L	(0.00 - 0.44)	R	
>Large unstained cells (%)	0	*		R	
Blast Flag	+++			R	
Atypical Lymph Flag					
Myelo-peroxidase Def. Flag					
Urgent blood film	Blood film examined				
Atyp Lymph (abs no)	0.00			R	
Metamye (abs no)	0.00	10×9/L		R	
Muelo (abs no)	0.00	10×9/L		R	
Promye (abs no)	47.78	10×9/L		R	
Blast (abs no)	2.17	10×9/L		R	
Atypical Lymphocytes (%)	0	*		R	
Metamyelocytes (%)	Ö	*		R	
Myelocytes (%)	Ö	8		R	
Promyelocytes (%)	88	*		R	

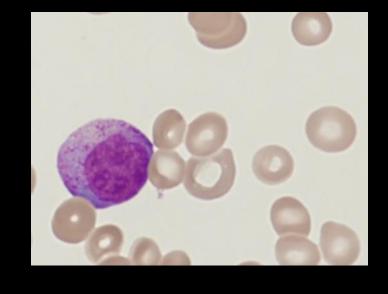

INR 1.5

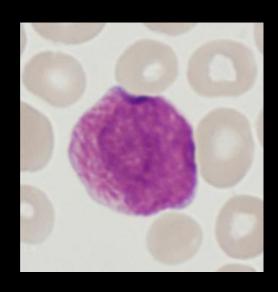

D-dimer 32078 ng/mL

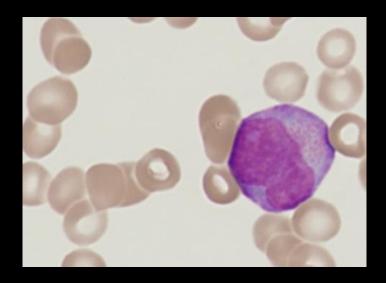
Fibrinogen 1.02 g/L

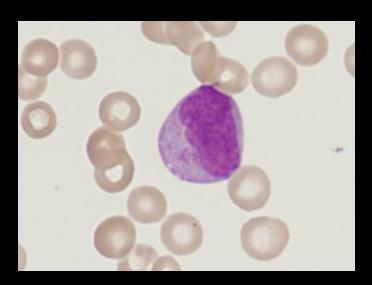
APL - MORPHOLOGY

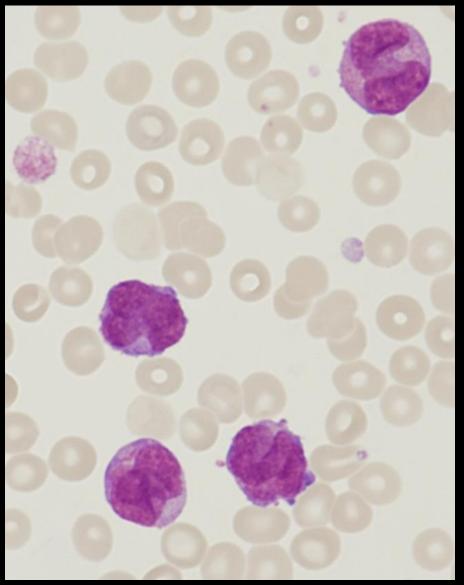
- Nuclear size and shape in the abnormal promyelocytes of hypergranular APL are irregular and greatly variable; they are often kidney shaped or bilobed
- Cytoplasm is marked by densely-packed large granules, staining bright pink, red or purple in Romanowsky stains
- Cytoplasmic granules may be so large and/or numerous that they totally obscure the nuclear cytoplasmic margin. In some cells, the cytoplasm is filled with fine dust-like granules
- Characteristic cells containing bundles of Auer rods ("faggot cells") randomly distributed in the cytoplasm are present in most cases
- Myeloblasts with single Auer rods may also be observed
- Auer rods in hypergranular APL are usually larger than in other types of AML

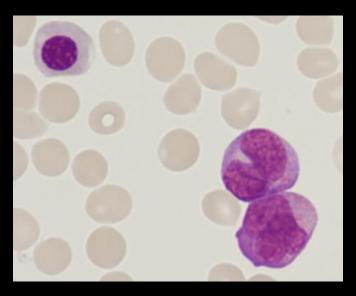


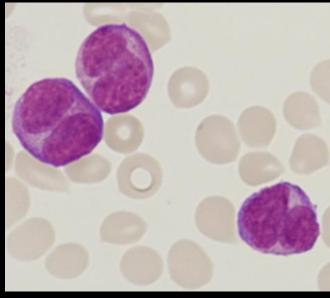



PROMYELOCYTE MORPHOLOGY PATIENT 1


HYPERGRANULAR






PROMYELOCYTE MORPHOLOGY PATIENT 2

MICROGRANULAR

PATIENT 1

Karyotype:

10 metaphase cells examined by G-band chromosome analysis

45, X-Y, t(15;17)(q24;q21), add 15 (q25), -22 (9) 46, XY (1)

PML::RARA gene rearrangement

48/50 (96%) cells had an abnormal signal pattern consistent with a *PML::RARA* gene rearrangement

Classified as Acute Promyelocytic Leukaemia with *PML::RARA* (WHO 2022)

PATIENT 2

Karyotype:

20 metaphase cells examined by G-band chromosome analysis 46,XY (20)

No evidence of a *PML::RARA* rearrangement No evidence of a RARA gene rearrangement (Interphase FISH)

21bp and 45bp FLT3-ITDs identified No evidence of insertion/duplication variant within the NPM1 gene (fragment analysis)

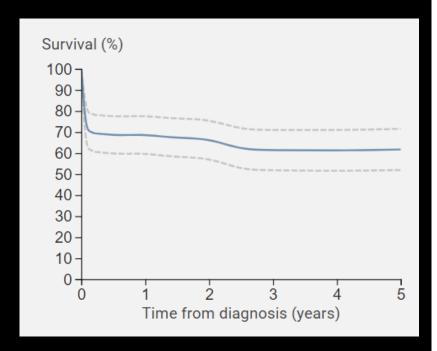
Positive for a *PML::RARA* fusion by nested RT-PCR and by RQ-PCR

Consistent with a cytogenetically cryptic *PML::RARA* rearrangement

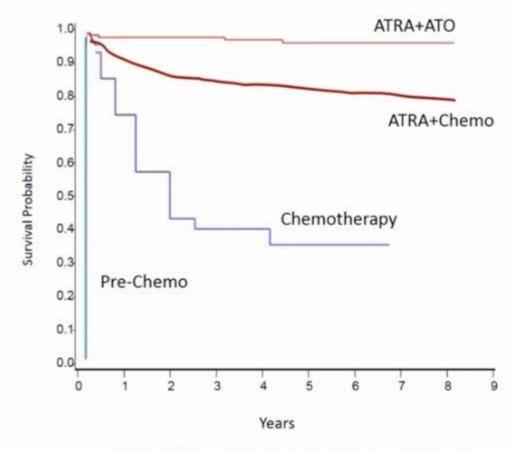
Classified as Acute Promyelocytic Leukaemia with *PML::RARA* (WHO 2022)

COAGULOPATHY

Lab Results


- Thrombocytopenia (<40 x10⁹/L in 25%)
- Prolonged PT/APTT
- Increased D Dimer / Low fibrinogen
- Protein C, S and antithrombin not usually decreased (in contrast to DIC)
- Microvascular thrombosis uncommon
- Low platelets not solely consumptive
- Physiological anticoagulant levels preserved
- Lower fibrinogen and factor V
- D dimers higher

SUGGESTS PRIMARY DRIVER IS INCREASED FIBRINOLYTIC ACTIVTY


Risk Factors for Bleeding

- WCC >10 x10⁹/L
- Fibrinogen <1.0 g/L
- PS < 2
- High creatinine
- Platelets NOT predictive

SUPERHERO OR VILLAIN?

APL: From Highly Fatal to Highly Curable

ATRA: All Trans Retinoic Acid; ATO: Arsenic Trioxide

REFERENCES

- 1. Li W. The 5th Edition of the World Health Organization Classification of Hematolymphoid Tumors. In: Li W. editor. Leukemia. Brisbane (AU): Exon Publications. Online first 15 Sep 2022
- 2. Khoury, J.D., Solary, E., Abla, O. et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukaemia (2022) 36: 1703-1719
- 3. Alaggio R et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukaemia (2022) 36: 1720-1748
- 4. Arber, D. A. et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022; 140 (11): 1200-1228
- 5. Campo E, Jaffe ES, Cook JR, et al. The International Consensus Classification of Mature Lymphoid Neoplasms: A Report from the Clinical Advisory Committee. Blood. 2022;140 (11): 1229–1253
- 6. www.hmrn.org Promyelocyte Factsheet
- 7. Pei R, Si T, Lu Y, Zhang P, Liu X, Ye P. Clinical features and prognostic analysis of high-risk acute promyelocytic leukemia patients. Zhonghua xue ye xue za zhi= Zhonghua xueyexue zazhi. 2016;37(5):360–365. doi: 10.3760/cma.j.issn.0253-2727.2016.05.002.
- 8. Kwaan HC. editor The unique hemostatic dysfunction in acute promyelocytic leukemia. Seminars in thrombosis and hemostasis. Thieme Medical Publishers; 2014